Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya.

نویسندگان

  • Frank M Hilker
  • Linda J S Allen
  • Vrushali A Bokil
  • Cheryl J Briggs
  • Zhilan Feng
  • Karen A Garrett
  • Louis J Gross
  • Frédéric M Hamelin
  • Michael J Jeger
  • Carrie A Manore
  • Alison G Power
  • Margaret G Redinbaugh
  • Megan A Rúa
  • Nik J Cunniffe
چکیده

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management

Low soil fertility and high weed infestation are the main culprits for the declining maize production inWestern Kenya. Technology packages to address these constraints exist, but their effectiveness is likely to be influenced by variability in soil types and farm management practices in the region. Trials were conducted during the 2008/2009 cropping seasons to investigate the nutrient use e...

متن کامل

Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize

The co-infection of Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV) can cause maize lethal necrosis. However, the mechanism underlying the synergistic interaction between these two viruses remains elusive. In this study, we found that the co-infection of MCMV and SCMV increased the accumulation of MCMV. Moreover, the profiles of virus-derived siRNAs (vsiRNAs) from MCMV and...

متن کامل

Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize

Maize chlorotic mottle virus (MCMV) was first reported in maize in China in 2009. In this study we further analyzed the epidemiology of MCMV and corn lethal necrosis disease (CLND) in China. We determined that CLND observed in China was caused by co-infection of MCMV and sugarcane mosaic virus (SCMV). Phylogenetic analysis using four full-length MCMV cDNA sequences obtained in this study and th...

متن کامل

Combining Ability among Twenty Insect Resistant Maize inbred lines Resistant to Chilo partellus and Busseola fusca Stem borers

A partial diallel design was used among 20 maize inbred lines to form 110 F1 hybrids to generate information on the values of these lines for developing insect resistant maize varieties during the short rains season of 2006. The hybrids were evaluated for resistance to the C. partellus and B. fusca, and for agronomic performance over two seasons during long and short rains of 2007 at a mid-alti...

متن کامل

Impact of Aspergillus section Flavi community structure on the development of lethal levels of aflatoxins in Kenyan maize (Zea mays).

AIMS To evaluate the potential role of fungal community structure in predisposing Kenyan maize to severe aflatoxin contamination by contrasting aflatoxin-producing fungi resident in the region with repeated outbreaks of lethal aflatoxicosis to those in regions without a history of aflatoxicosis. METHODS AND RESULTS Fungi belonging to Aspergillus section Flavi were isolated from maize samples ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 107 10  شماره 

صفحات  -

تاریخ انتشار 2017